skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Weiss‐Lehman, Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT With many species interacting in nature, determining which interactions describe community dynamics is nontrivial. By applying a computational modeling approach to an extensive field survey, we assessed the importance of interactions from plants (both inter‐ and intra‐specific), pollinators and insect herbivores on plant performance (i.e., viable seed production). We compared the inclusion of interaction effects as aggregate guild‐level terms versus terms specific to taxonomic groups. We found that a continuum from positive to negative interactions, containing mostly guild‐level effects and a few strong taxonomic‐specific effects, was sufficient to describe plant performance. While interactions with herbivores and intraspecific plants varied from weakly negative to weakly positive, heterospecific plants mainly promoted competition and pollinators facilitated plants. The consistency of these empirical findings over 3 years suggests that including the guild‐level effects and a few taxonomic‐specific groups rather than all pairwise and high‐order interactions, can be sufficient for accurately describing species variation in plant performance across natural communities. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract Rapid evolution of increased dispersal at the edge of a range expansion can accelerate invasions. However, populations expanding across environmental gradients often face challenging environments that reduce fitness of dispersing individuals. We used an eco‐evolutionary model to explore how environmental gradients influence dispersal evolution and, in turn, modulate the speed and predictability of invasion. Environmental gradients opposed evolution of increased dispersal during invasion, even leading to evolution of reduced dispersal along steeper gradients. Counterintuitively, reduced dispersal could allow for faster expansion by minimizing maladaptive gene flow and facilitating adaptation. While dispersal evolution across homogenous landscapes increased both the mean and variance of expansion speed, these increases were greatly dampened by environmental gradients. We illustrate our model's potential application to prediction and management of invasions by parameterizing it with data from a recent invertebrate range expansion. Overall, we find that environmental gradients strongly modulate the effect of dispersal evolution on invasion trajectories. 
    more » « less
  3. Abstract How repeatable is evolution at genomic and phenotypic scales? We studied the repeatability of evolution during 8 generations of colonization using replicated microcosm experiments with the red flour beetle, Tribolium castaneum. Based on the patterns of shared allele frequency changes that occurred in populations from the same generation or experimental location, we found adaptive evolution to be more repeatable in the introduction and establishment phases of colonization than in the spread phase, when populations expand their range. Lastly, by studying changes in allele frequencies at conserved loci, we found evidence for the theoretical prediction that range expansion reduces the efficiency of selection to purge deleterious alleles. Overall, our results increase our understanding of adaptive evolution during colonization, demonstrating that evolution can be highly repeatable while also showing that stochasticity still plays an important role. 
    more » « less
  4. What prevents populations of a species from adapting to the novel environments outside the species' geographic distribution? Previous models highlighted how gene flow across spatial environmental gradients determines species expansion versus extinction and the location of species range limits. However, space is only one of two axes of environmental variation—environments also vary in time, and we know temporal environmental variation has important consequences for population demography and evolution. We used analytical and individual-based evolutionary models to explore how temporal variation in environmental conditions influences the spread of populations across a spatial environmental gradient. We find that temporal variation greatly alters our predictions for range dynamics compared to temporally static environments. When temporal variance is equal across the landscape, the fate of species (expansion versus extinction) is determined by the interaction between the degree of temporal autocorrelation in environmental fluctuations and the steepness of the spatial environmental gradient. When the magnitude of temporal variance changes across the landscape, stable range limits form where this variance increases maladaptation sufficiently to prevent local persistence. These results illustrate the pivotal influence of temporal variation on the likelihood of populations colonizing novel habitats and the location of species range limits. 
    more » « less
  5. Abstract Research has conclusively demonstrated the potential for dispersal evolution in range expansions and shifts, however the degree of dispersal evolution observed has varied substantially among organisms. Further, it is unknown how the factors influencing dispersal evolution might impact other ecological processes at play. We use an individual-based model to investigate the effects of the underlying genetics of dispersal and mode of reproduction in range expansions and shifts. Consistent with predictions from stationary populations, dispersal evolution increases with sexual reproduction and loci number. Contrary to our predictions, however, increased dispersal does not always improve a population’s ability to track changing conditions. The mate finding Allee effect inherent to sexual reproduction increases extinction risk during range shifts, counteracting the beneficial effect of increased dispersal evolution. Our results demonstrate the importance of considering both ecological and evolutionary processes for understanding range expansions and shifts. 
    more » « less
  6. Abstract Dispersal is a central life history trait that affects the ecological and evolutionary dynamics of populations and communities. The recent use of experimental evolution for the study of dispersal is a promising avenue for demonstrating valuable proofs of concept, bringing insight into alternative dispersal strategies and trade‐offs, and testing the repeatability of evolutionary outcomes.Practical constraints restrict experimental evolution studies of dispersal to a set of typically small, short‐lived organisms reared in artificial laboratory conditions. Here, we argue that despite these restrictions, inferences from these studies can reinforce links between theoretical predictions and empirical observations and advance our understanding of the eco‐evolutionary consequences of dispersal.We illustrate how applying an integrative framework of theory, experimental evolution and natural systems can improve our understanding of dispersal evolution under more complex and realistic biological scenarios, such as the role of biotic interactions and complex dispersal syndromes. 
    more » « less
  7. Enquist, Brian (Ed.)